行列鎖乗算問題とは

行列鎖乗算問題(Matrix Chain Multiplication Problem)とは、複数の行列を連続して乗算する際に、計算コストが最も小さくなるような乗算の順序(括弧の付け方)を決定する、最適化問題を指します。行列の乗算は結合法則は満たしますが、交換法則は満たさないため、乗算順序によって計算量が大きく変動することがあり、この問題は動的計画法(Dynamic Programming)の典型的な適用例として知られています。

行列鎖乗算問題の基本的な概念

複数の行列$A_1, A_2, \dots, A_nの積 A_1 A_2 \dots A_nを計算することを考えます。行列の乗算は、その順序によって必要なスカラー乗算の総数が大きく変わります。例えば、A \times B \times C という3つの行列の積を計算する場合、(A \times B) \times C とA \times (B \times C)$の2通りの順序が考えられます。

どちらの順序がより効率的かは、各行列の次元によって異なります。

主な概念は以下の通りです。

  1. 行列の次元: 行列$ Aが$ p \times q行列、行列$Bが$ q \times r行列である場合、これらの積$ABは$p \times r 行列となり、必要なスカラー乗算の数は$ p \times q \times r 回となります。この計算回数を最小化することが目的です。
  2. 結合法則: 行列の乗算は結合法則$ (AB)C = A(BC)$が成り立ちます。つまり、計算結果はどの順序で括弧を付けても同じになります。しかし、計算コストは異なります。
  3. 最適化: 目的は、スカラー乗算の総数を最小化する順序を見つけることです。

動的計画法による解法

行列鎖乗算問題は、最適な部分構造と重複部分問題を持つため、動的計画法で効率的に解くことができます。

考え方:

  • 与えられた$ n 個の行列$ A_1, A_2, \dots, A_n $の積を計算する問題を、より小さな部分問題に分割します。
  • 部分問題は、「Ai​から A_j $までの行列の積を計算する際の最小コスト」と定義できます。
  • この最小コストを計算するために、$ A_i \dots A_j $の積を$ (A_i \dots A_k) (A_{k+1} \dots A_j) $のように分割することを考えます。ここで$ k $は$ i から$ j-1 $までの任意のインデックスです。
  • 各部分問題の解をメモ化(記憶)し、重複する計算を避けます。

アルゴリズムの概要:

  1. 行列の次元の配列$ P を用意します。Ai​が P_{i-1} \times P_i 行列であるとします。つまり、n個の行列に対して n+1 個の次元情報$ P_0, P_1, \dots, P_n $が必要です。
  2. n×nの二次元配列 M を作成し、M[i][j]を A_i から$ A_j $までの積の最小コストとします。
  3. Mを初期化します。 M[i][i] = 0 $(1つの行列の積はコスト0)。
  4. 部分鎖の長さ$ L = 2, 3, \dots, n $についてループを回します。
  5. 各長さ$ L に対し、開始インデックス i = 1, \dots, n-L+1 $をループします。
  6. 終了インデックス$ j = i + L – 1 $を計算します。
  7. M[i][j]を計算します。 M[i][j] は、すべての可能な分割点$ k (i≤k<j)における最小コストとなります。 M[i][j]=mini≤k<j​(M[i][k]+M[k+1][j]+Pi−1​×Pk​×Pj​) ここで、$ P_{i-1} \times P_k \times P_j $は、$ (A_i \dots A_k) と$ (A_{k+1} \dots A_j) $を乗算する際のコストです。
  8. 最終的に$ M[1][n] が、$ A_1 \dots A_n $の積の最小コストとなります。

また、最適な分割点$ k $を記録する別の配列を用意することで、最適な乗算順序(括弧の付け方)も再構築することができます。

行列鎖乗算問題の応用

行列鎖乗算問題は、それ自体が特定のアルゴリズムの直接的な応用例として使われることは稀ですが、以下のような文脈でその概念が重要になります。

  • 動的計画法の理解: プログラミング競技やアルゴリズムの学習において、動的計画法の概念を理解し、適用する能力を養うための古典的かつ優れた問題として扱われます。
  • 最適化問題の基礎: 複数の操作を連続して行う際の最適な順序を決定するという問題構造は、様々な最適化問題の基礎となります。
  • コンパイラの最適化: 理論的には、コンパイラが連鎖した行列乗算命令を最適化する際に、この種の最適化の考え方が利用される可能性があります。

行列鎖乗算問題(Matrix Chain Multiplication Problem)とは、複数行列の積を計算する際に、計算コスト(スカラー乗算の総数)が最小となるような乗算の順序を決定する最適化問題です。行列の次元によって乗算コストが大きく異なるため、順序の選択が重要になります。

この問題は、動的計画法の典型的な適用例として知られており、部分問題を定義し、その解をメモ化することで効率的に最適な順序を見つけることが可能です。主にアルゴリズム学習における動的計画法の理解を深める目的で用いられるほか、一般的な最適化問題の基礎としても重要な概念です。

関連用語

アルゴリズム | 今更聞けないIT用語集
最適化問題 | 今更聞けないIT用語集
AIソリューション

お問い合わせ

システム開発・アプリ開発に関するご相談がございましたら、APPSWINGBYまでお気軽にご連絡ください。

APPSWINGBYの

ソリューション

APPSWINGBYのセキュリティサービスについて、詳しくは以下のメニューからお進みください。

システム開発

既存事業のDXによる新規開発、既存業務システムの引継ぎ・機能追加、表計算ソフトによる管理からの卒業等々、様々なWebシステムの開発を行っています。

iOS/Androidアプリ開発

既存事業のDXによるアプリの新規開発から既存アプリの改修・機能追加まで様々なアプリ開発における様々な課題・問題を解決しています。


リファクタリング

他のベンダーが開発したウェブサービスやアプリの不具合改修やソースコードの最適化、また、クラウド移行によってランニングコストが大幅にあがってしまったシステムのリアーキテクチャなどの行っています。